
Yahtzee Strategy Analysis – Wissner – Group 48  Page 1 

 

Yahtzee Strategy Analysis 

Using Simulation to Evaluate the Performance of Various Gameplay Strategies 

Eric J. Wissner (Group 48) 

 

Abstract 

 

This paper presents a simulation-based analysis of gameplay strategies in the classic dice game, Yahtzee.  The study explores 

two novel approaches that attempt to leverage bonus opportunities in the game, namely the Upper Focus strategy and the 

Yahtzee Focus strategy.  The simulation models different variants of these strategies alongside a standard Dice-Driven 

approach and a One-Roll baseline.  The results indicate that the Dice-Driven strategy outperforms all other approaches, 

including the two bonus-focused strategies.  The paper provides detailed methodology and output analysis, including input 

validation and statistical testing of the simulated data.  These findings demonstrate that, despite their potential benefits, the 

bonus-focused strategies do not represent viable alternatives to traditional gameplay in Yahtzee. 

 

Background and Description of Problem 

 

According to Board Game Geek, Yahtzee is a classic turn-based dice 

game first introduced in 1956 (BoardGameGeek, n.d.).  It is played with five 

standard dice, with values on each from one to six.  During each turn, a player 

may take up to three rolls (electing to keep or roll each die at their discretion) to 

earn scores in one of thirteen categories.  At the end of the turn, the player must 

record a score in one of the categories – taking a zero in the category of their 

choice if the result of their final roll allows no viable scoring options.  The 

highest scoring category is called “Yahtzee” and it is earned by the player 

ending their turn with five of the same dice value.  Figure 1 shows a sample 

scorecard.  

Although the directions are simple enough, the variety of categories 

forces the player to make decisions before each roll about which dice to hold 

and then later as to where to record the points from their turn.  For instance, while several of the categories are based on how 

many of a specific value the player has at the end of their turn, a couple categories (Small Straight and Large Straight) instead 

require a sequence of four or five dice, respectively.   

There are two types of bonuses to also consider: the Upper Section bonus and Yahtzee bonuses.  As the name implies, 

the Upper Section of categories is at the top of the page and has a category for each value from one to six.  The player can earn 

Figure 1: Sample scorecard (The Yahtzee Manifesto, n.d.) 



Yahtzee Strategy Analysis – Wissner – Group 48  Page 2 

 

points for the sum of the dice that match the respective category.  For instance, with a final roll of [1, 3, 3, 4, 4], the player 

could earn one point in the “Ones” category, six points in the “Threes” category (3 + 3), or eight points in the “Fours” category 

(4 + 4).  At the end of the game, the player will receive a 35-point bonus if the sum of the scores in the Upper Section is greater 

than or equal to 63 points.  This is not an arbitrary threshold; but instead represents the score the player would achieve with 

exactly three of the correct dice for each of the Upper Section categories.   

A Yahtzee bonus of 100 points is earned for every Yahtzee scored after the first one.  Additionally, having five of the 

same value dice puts the player in a good position to earn a high score in one of the normal categories as well.   

Given those opportunities for bonus points, this analysis seeks to determine if either or both of two focused strategies 

can outperform a standard strategy based on the results of each roll and the categories remaining at that point in time.  The first 

novel approach is called Upper Focus and compels the player to maximize points in the Upper Section, allowing them to earn 

the associated bonus.  Recognizing that the bonus is achieved with, on average, three of each of those category’s dice values, 

this approach will at times take zeroes in the other categories to preserve the opportunity for the bonus.  Once the categories in 

the Upper Section have been completed, the strategy then reverts to a standard dice-driven strategy. 

The other special strategy is called Yahtzee Focus and strives to maximize the player’s score by achieving as many 

Yahtzees as possible.  In this strategy, the Small and Large Straight categories (worth 30 and 40 points, respectively) are 

effectively ignored in the interest of earning the 50-point Yahtzee and 100-point bonuses. 

 

Methodology 

 

Due to the complexity of the game and the branching decisions facing a player on each roll, an analytic solution for 

comparing Yahtzee strategies could not be easily derived.  Instead, simulation was used to model the game environment, to 

codify the logic for each strategy, to record the scores for each turn and game played, and to ultimately compare the 

performances of the different approaches. 

Each of the following strategies and strategy variants were modeled and included in the simulation: 

- Dice-driven strategy.  This approach represents standard gameplay. 

- Upper Focus – High.  This version of the Upper Focus strategy uses the higher valued dice when two otherwise 

equal choices exist. 

- Upper Focus – Low.  This version of the Upper Focus strategy uses the lower valued dice when two equal 

otherwise equal choices exist. 

- Yahtzee Focus – High.  This version of the Yahtzee Focus strategy uses the higher valued dice when two otherwise 

equal choices exist. 

- Yahtzee Focus – Low.  This version of the Yahtzee Focus strategy uses the lower valued dice when two otherwise 

equal choices exist. 

- One Roll.  This approach was included as a baseline of sorts; it uses the dice from the first roll for the entire turn. 



Yahtzee Strategy Analysis – Wissner – Group 48  Page 3 

 

Item 1 in the Appendix contains the flowchart created to model the flow of a game of Yahtzee.  The Upper Focus, 

Yahtzee Focus, and One Roll strategies were straightforward enough to include in this overall model.  The logic for which dice 

to hold in the Dice Driven approach, however, required its own flowchart, which is illustrated in Item 2.  Decisions involving 

where to record scores were based on a Default Priority Scoring list.  This list, along with the official Joker Scoring rules (used 

when multiple Yahtzees are rolled), are included in Item 3. 

A Python program (version 3.7) was developed using the PyCharm Community Edition IDE to simulate 10,000 games 

using each of the strategy variants.  To ensure each strategy faced the same dice at the start of each turn, the technique of 

common random numbers was employed.  Instead of generating random dice values as needed within each strategy’s 

gameplay, a series of 15 random dice values was generated and set aside for use during each turn.  In many cases, this meant 

that some of the reserved dice values were not used.  This was acceptable as the common dice values across strategies were 

expected to return smaller confidence intervals when evaluating the differences between average scores for each strategy. 

The program, named YahtzeeSim.py, is included in the project deliverables (with code included in the Appendix) and 

can be executed using a local Python environment.  Runtime parameters include choice of random seed, number of simulations 

to run, the strategy to use, and the choice of a high or low tiebreaker as described earlier.   

The information in Figure 2 is available using the program’s “help” parameter (-h) and guides the user on how to 

specify those parameters when running the program:  

 

 

 

 

Figure 2: YahtzeeSim.py help output 

> python YahtzeeSim.py -h 
usage: YahtzeeSim.py [-h] [-s SEED] [-g GAMES] [-o | -y | -u | -d] 
                     [--high | --low] 
 
This program will simulate Yahtzee games using the strategy of your choice 
(see below for options). The average scores for each slot will be displayed 
along with the average total score. Several log files will be saved to the 
working directory to view details or for additional analysis. 
 
optional arguments: 
  -h, --help            show this help message and exit 
  -s SEED, --seed SEED  Integer used for random seed. (default: 290) 
  -g GAMES, --games GAMES 
                        Number of games to simulate. (default: 1000) 
  -o, --oneroll         Baseline game; only one roll per turn (default: False) 
  -y, --yahtzee         Go for Yahtzee every turn (default: False) 
  -u, --upper           The Upper Section is the first priority (default: 
                        False) 
  -d, --dicedriven      Default strategy; Choices driven by dice rolled 
                        (default: True) 
  --high                Given the choice between dice, go with the higher 
                        value (default: True) 
  --low                 Given the choice between dice, go with the lower value 
                        (default: False) 



Yahtzee Strategy Analysis – Wissner – Group 48  Page 4 

 

For each series of simulated games, the following five log files were generated:   

- Log <Strategy> Sets of Dice.  The collection of 15 dice values generated and available for each game and turn. 

- Log <Strategy> Dice Values.  Each individual dice value rolled by game, turn, and roll. 

- Log <Strategy> Rolls.  For each game, turn, and roll, the dice “on the table”, the hold/roll decisions for each die, 

and the strategy justification for those decisions. 

- Log <Strategy> Scoring.  The results of each scoring decision by game and turn; including final dice values, 

category, and points earned. 

- Log <Strategy> Master Score Sheet.  The points scored in each category and bonus slot by game. 

Data from these files were used to validate the models and the code itself and then were used to support the necessary 

input and output analysis for the project.  A sample set of log files for the Dice Driven approach are included in the project 

deliverables. 

 

Main Findings 

 

Input Analysis 

 

The dice values generated within the Python program are pseudo random numbers.  When dealing with pseudo random 

numbers, it is important to perform input analysis to ensure that the data used by a simulation accurately reflect the 

environment being modeled.  For Yahtzee gameplay, that means ensuring the concept of fair dice – that any number from one 

to six had an equal chance of being rolled.  It also means that the dice values should be independent without patterns associated 

with when that equal distribution of dice values was generated. 

For each series of simulated games, the same set of 1,950,000 dice values were generated (15 dice reserved for 13 

turns within 10,000 games).  Figure 3 displays the distribution of those dice values. 

 

 
 Figure 3: Distribution of generated dice values 



Yahtzee Strategy Analysis – Wissner – Group 48  Page 5 

 

Although a visual inspection suggests the dice values were approximately equally distributed, a chi-square goodness-

of-fit test was conducted to confirm that expectation.  Using the formula below, with k=6 discrete possible values and 

Ei=325,000 observations for each value, the chi-squared goodness-of-fit test statistic was calculated to be 2.77.   

 

𝑥଴
ଶ ≡ ෍

(𝑂௜ − 𝐸௜)ଶ

𝐸௜
= 2.76544

௞

௜ୀଵ

 

 

Evaluating that statistic against the chi-square statistic at 𝛼=0.05 and 5 degrees of freedom (11.07), the null hypothesis 

that the observed distribution of dice values did not match the expected distribution of dice values was rejected. 

Next, a Wald-Wolfowitz Runs Test (above and below the mean) was conducted using the runs.test function in R to 

determine if the dice values were independent.  With a p-value of 0.8489, the null hypothesis of randomness could not be 

rejected, indicating that the dice values were generated in a random manner.   

 

Output Analysis 

 

Before the performance of the different strategies could be evaluated and compared, the output from the simulations 

needed to be reviewed, particularly to understand if the data were independent, identically distributed, and normally 

distributed.  Within each series of simulated games, the final scores were independent in that they did not depend on the 

previous game’s score, nor were they impacted by it.  Furthermore, because the probabilities of the six dice values did not 

change from game to game, their scores were also identically distributed and did not change over time. 

Unfortunately, as illustrated in Figure 4, the scores over the 10,000 games were not normally distributed.  The One 

Roll approach was closest to normal; but an Anderson-Darling Test confirmed that its scores were in fact not normally 

distributed (p-value = 2.2e-16).   

 

 Figure 4: Distribution of scores by strategy 



Yahtzee Strategy Analysis – Wissner – Group 48  Page 6 

 

The Central Limit Theorem can be used to account for this and to help determine more reliable confidence intervals 

for the various strategies’ scores.  Accordingly, the 10,000 games were divided into 400 batches of 25 games each.  Figure 5 

displays the resulting (more normally distributed) histograms for each approach.   

  

 
 

 Using the following formulas for calculating the sample mean (𝑍̅ସ଴଴) and sample variance (𝑆௓
ଶ) for each strategy 

across the 400 batches (Figure 6), the 95% confidence intervals were calculated using 𝑡଴.଴ଶହ,ଷଽଽ = 1.966 and are 

visualized in Figure 7 and listed in Figure 8. 

 

𝑍̅ସ଴଴ =
1

400
∗ ෍ 𝑍௜                     𝑆௓

ଶ =
1

399
∗ ෍(𝑍௜ − 𝑍̅ସ଴଴)ଶ

ସ଴଴

௜ୀଵ

ସ଴଴

௜ୀଵ

 

 

 

 

Figure 5: Distribution of batched scores by strategy 

Figure 6: Calculating sample mean and variance using the mean scores from the 400 batches 

Figure 7: 95% confidence intervals by strategy 



Yahtzee Strategy Analysis – Wissner – Group 48  Page 7 

 

 

 
 

The Yahtzee Focus and Upper Focus strategies did not appear to return higher scores than the Dice Driven approach, 

despite focusing on the bonuses.  On the contrary, all four novel strategies as well as the One Roll baseline approach seemed to 

return scores that were in fact lower than the standard approach.   

To compare the performance of the different strategies more definitively, a ranking and selection procedure was 

employed to understand which approach was more likely to return the highest score.  Because each strategy faced the same sets 

of dice for each turn within each game (recall the use of common random numbers), the game-by-game scores for each 

approach were first compared to determine a “winner” for each of the 10,000 simulated games, effectively having the strategies 

compete against each other.  A single stage procedure to select the most probable winner was then able to be utilized on this 

multinomial selection problem. 

In the procedure based on the work of Bechhofer, Elmaghraby, and Morse (1959), a certain number of observations 

(games) were evaluated based on the number of strategies (𝑘), the specified probability requirement (𝑃⋆), and the smallest 

ratio of the best and second-best strategy probabilities (𝜃⋆).  The One Roll baseline model was not included in the procedure, 

meaning k equaled 5.  A 95% overall probability requirement was used and a ratio of 1.4 was used for 𝜃⋆.   Given these inputs, 

the procedure recommended a sample size of 374 games, the results of which are displayed in Figure 9. 

 

 
 

Based on these results, the Dice Driven strategy can be considered the best approach and, by extension, it can be 

concluded that the novel strategies do not represent viable alternatives to traditional gameplay despite their focus on bonus 

opportunities.   

  

Strategy

One Roll 108.2 14.6

Yahtzee Focus - High 185.1 11.6

Yahtzee Focus - Low 166.9 11.9

Upper Focus - High 208.2 11.5

Upper Focus - Low 205.6 11.4

Dice Driven 235.2 11.9

Mean Batch Score

±

±

±

±

±

±

Strategy Games Won

Dice Driven 210

Upper Focus - High 70

Upper Focus - Low 51

Yahtzee Focus - High 29

Yahtzee Focus - Low 14

Figure 8: Point estimates and margins of error (95% CI) by strategy 

Figure 9: Results of Single Stage Multinomial Procedure 



Yahtzee Strategy Analysis – Wissner – Group 48  Page 8 

 

Conclusion 

 

Despite its age, Yahtzee remains a compelling game.  It is easy to learn but offers its players challenges associated 

with the randomness of the dice, the differences in the scoring categories, and the opportunities for bonus points.  These factors 

require thoughtful decision-making, boldness, and ultimately a little bit of luck.   

This analysis explored two types of alternative gameplay strategies that try to exploit the two bonuses in the game:  

Yahtzee-focused strategies and Upper Section-focused strategies.  Despite logic intended to “ensure” the bonuses are achieved, 

these novel approaches cannot consistently outscore a standard Dice Driven strategy.   

As games of Yahtzee are typically played with other players, with scoring choices for all players publicly known, it 

might be interesting for future analyses on this topic to include elements of game theory.  Would overall strategies need to be 

flexible considering what other players do?  Would the response be subtle, perhaps in terms of the scoring priorities? 

 

  



Yahtzee Strategy Analysis – Wissner – Group 48  Page 9 

 

Appendix 

 

Item 1 – Game Flow Logic 

 

Game starts

Completed 13 
rolls?

Score over 63 in 
upper section? Add up all points

Add 35 bonus points 
to upper section

Yes No

Yes

Completed 3 
rolls?

Roll all un-held dice

Game ends

Enter score on 
scoresheet

Applying One-
Roll approach?

No

Apply Default 
Priority Scoring* 

logic 
Yes

Yes

Hold dice as defined 
by logic, including 
high/low sorting

Is something 
scoreable?

Is this Upper 
value still 
needed?

Count quantities by 
value and sort based 

on quantity and 
tiebreaker 

(SortedValueDict)

Evaluate (next) 
highest priority 

value in 
SortedValueDict

Applying 
Yazhtee-Focused 

approach?

No

Have Yahtzee?

No

Any more values 
to evaluate?

Dice-Driven 
approach

Applying Upper-
Focused 

approach?

YesYes

Yes Yes

Yes

No

NoNo

No

Yes NoNo

 
  



Yahtzee Strategy Analysis – Wissner – Group 48  Page 10 

 

Item 2 – Dice Driven Strategy Logic 

 

Dice-Driven 
approach

Have 5 of a kind?

Increment 
Bonus and take 
score based on 
Joker Scoring** 

logic

Is Yahtzee still 
needed?

Return w/ held 
dice

Keep duplicates 
of that value 

and reroll

Have four of a 
kind?

Return and 
record score

Take score in 
Yahtzee

Return and 
record score

Take score in 
Full House

Need either 
Straight?

What is longest 
sequence?

Are there 3+ 
different values?

Are there 2 
distinct values?

Is Full House 
Needed?

Is Large Straight 
needed?

Take score in 
Large Straight

Are there 1 or 2 
turns left?

Keep dice with 
highest Need 
Score; larger 
value if tied.

Return w/ held 
dice

Take score in 
Small Straight

Return and 
record score

Keep the 
longest 

sequence and 
reroll

Is Large Straight 
needed?

Keep sequence 
and reroll

Return w/ held 
dice

Is Small Straight 
needed?Reroll ALL dice Return w/ NO 

held dice

Is it one of: 
1235X, 1345X, 
2346X, 2456X?

Keep those 4 
dice and reroll

YesNo

No

Yes Yes

No

Yes

Yes

No Yes

No

No Yes

No

Yes

No

Yes

No

Yes
No

5

4

Yes

Yes

Yes

No

Are there 2 
values with 

quantities of 2?

Keep dice with 
those values 

and reroll

Yes

No

No

2 or less

Calculate Need Score for each value.
Sum of scores below times quantity

Is Upper needed for that value?
Is 4 of Kind needed and value >=3?
Is 4 of Kind needed and value <3?
Is 3 of Kind needed and value >=4?
Is 3 of Kind needed and value <4?
Is Full House needed?
Is Yahtzee needed?

3x
2x
1x
2x
1x
1x
1x

Is max Need 
Score 0?

No

Yes

5 different 
values or paired 

values not 
needed?

3

No

 
 

  



Yahtzee Strategy Analysis – Wissner – Group 48  Page 11 

 

Item 3 – Default Priority and Joker Scoring 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

**Joker Scoring
Take the first of these that apply

Upper Section Category
3 of a Kind
4 of a Kind
Full House
Small Straight
Large Straight
Chance
Upper 1's (take a 0)
Upper 2's (take a 0)
Upper 3's (take a 0)
Upper 4's (take a 0)
Upper 5's (take a 0)
Upper 6's (take a 0)

*Default Priority Scoring
Take the first of these that apply

Yahtzee (50) or Yahtzee Bonus (100) + Joker Scoring**
Large Straight (40)
Small Straight (30)
Full House (25)
Upper 6's; if 3 or more (sum of 6's)
Upper 5's; if 3 or more (sum of 5's)
Upper 4's; if 3 or more (sum of 4's)
Upper 3's; if 3 or more (sum of 3's)
Upper 2's; if 3 or more (sum of 2's)
Upper 1's; if 3 or more (sum of 1's)
4 of a Kind (sum of all dice)
3 of a Kind (sum of all dice)
Chance; if >= 15 points  (sum of all dice)
Upper 1's; if any (sum of 1's)
Upper 2's; if any (sum of 2's)
Upper 3's; if any (sum of 3's)
Upper 4's; if any (sum of 4's)
Upper 5's; if any (sum of 5's)
Upper 6's; if any (sum of 6's)
Chance
Large Straight (take a 0)
Small Straight (take a 0)
Full House (take a 0)
4 of a Kind (take a 0)
3 of a Kind (take a 0)
Upper 1's (take a 0)
Upper 2's (take a 0)
Upper 3's (take a 0)
Upper 4's (take a 0)
Upper 5's (take a 0)
Upper 6's (take a 0)
Yahtzee (take a 0)



Yahtzee Strategy Analysis – Wissner – Group 48  Page 12 

 

Citations 

 

Bechhofer, R. E., S. A. Elmaghraby, and N. Morse (1959). A single-sample multiple-decision procedure for selecting the 

multinomial event which has the largest probability. Ann. Math. Statist. 30 102-119 

Yahtzee. BoardGameGeek. (n.d.). Retrieved from https://boardgamegeek.com/boardgame/2243/yahtzee 

 

 

  



Yahtzee Strategy Analysis – Wissner – Group 48  Page 13 

 

Python Code 

 
import argparse 
parser = argparse.ArgumentParser(description="This program will simulate Yahtzee games using the strategy of 
your choice (see below for options).  The average scores for each slot will be displayed along with the average 
total score.  Several log files will be saved to the working directory to view details or for additional 
analysis.", 
                                 formatter_class=argparse.ArgumentDefaultsHelpFormatter) 
seedparser=parser.add_argument("-s", "--seed", help='Integer used for random seed.', type = int, default=290) 
gamesparser=parser.add_argument("-g", "--games", help='Number of games to simulate.', type = int, default=1000) 
groupapproach = parser.add_mutually_exclusive_group() 
groupapproach.add_argument( "-o", "--oneroll", action="store_true", help='Baseline game; only one roll per 
turn') 
groupapproach.add_argument( "-y", "--yahtzee", action="store_true", help='Go for Yahtzee every turn') 
groupapproach.add_argument( "-u", "--upper", action="store_true", help='The Upper Section is the first 
priority') 
groupapproach.add_argument( "-d", "--dicedriven", action="store_false", help='Default strategy; Choices driven 
by dice rolled') 
grouptiebreaker = parser.add_mutually_exclusive_group() 
grouptiebreaker.add_argument("--high", action="store_false", help='Given the choice between dice, go with the 
higher value') 
grouptiebreaker.add_argument("--low", action="store_true", help='Given the choice between dice, go with the 
lower value') 
args = parser.parse_args() 
config = vars(args) 
 
Approach = 'Dice Driven' 
Tiebreaker = 'High' 
SeedtoUse = args.seed 
GamesToPlay = args.games 
 
if args.low: 
    Tiebreaker = 'Low' 
 
if args.oneroll: 
    Approach="One Roll" 
if args.yahtzee: 
    Approach='Yahtzee Focused' 
if args.upper: 
    Approach = 'Upper Focused' 
 
if Approach == 'One Roll' or Approach == 'Dice Driven': 
    ApproachName = Approach 
else: 
    ApproachName = Approach + ' ' + Tiebreaker 
 
from collections import Counter 
import random 
import pandas as pd 
 
import datetime 
ct= datetime.datetime.now() 
ct = str(ct).replace(':', '-') 
ct = ct.replace('.', '-') 
 
MasterScoreSheet = pd.DataFrame(columns = ['Approach', 'Game', 'Ones', 'Twos', 'Threes', 'Fours', 'Fives', 
'Sixes', 'UpperBonus', 'TofK', 'FofK', 'FH', 'SS', 'LS', 'Yahtzee', 'Chance', 'YBonus', 'Total']) 
Log_Scoring = [] 
Log_Rolls = [] 
Log_DiceValues = [] 
Log_SetsofDice = [] 
 
ThisScoreSheet = {} 
ThisScoreFlags = {} 
 
ValueNames = {1:'Ones', 2:'Twos', 3:'Threes', 4:'Fours', 5:'Fives', 6:'Sixes'} 
DiceForTurn = [] 
DicePointer = 0 
 
random.seed(SeedtoUse) 
 
 
def GetNewSetofDice(): 
    DiceForTurn=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
    for dnum in range(0, 15): 
        DiceForTurn[dnum] = random.randint(1, 6) 



Yahtzee Strategy Analysis – Wissner – Group 48  Page 14 

 

    return DiceForTurn 
 
 
def RandomRoll(StartingDice, DiceHeld, DiceForTurn, DicePointer): 
    DiceArrow = DicePointer 
    EndingDice = StartingDice 
    for d in range(0, 5): 
        if not DiceHeld[d]: 
            EndingDice[d] = DiceForTurn[DiceArrow]          # random.randint(1, 6) 
            DiceArrow = DiceArrow + 1 
            Log_DiceValues.append([Game, Turn, Roll, EndingDice[d]]) 
    return (EndingDice, DiceArrow) 
 
 
def GetSequenceInfo(InputValues): 
    SortedVal = sorted(InputValues) 
    BestLen = 0 
    BestStartVal = 0 
    BestEndVal = 0 
    Leni = 1 
    StartVal = SortedVal[0] 
    EndVal = SortedVal[0] 
 
    for i in range(1,5): 
        if SortedVal[i] > SortedVal[i-1]: 
            if SortedVal[i] == SortedVal[i-1] + 1: 
                Leni = Leni + 1 
                EndVal = SortedVal[i] 
            else: 
                if Leni > BestLen: 
                    BestLen = Leni 
                    BestStartVal = StartVal 
                    BestEndVal = EndVal 
                Leni = 1 
                StartVal = SortedVal[i] 
                EndVal = SortedVal[i] 
 
    if Leni > BestLen: 
        BestLen = Leni 
        BestStartVal = StartVal 
        BestEndVal = EndVal 
 
    return BestLen, BestStartVal, BestEndVal 
 
 
def DefaultPriorityScoring(Game, Turn, Roll, DiceValue, ValueDict): 
    FiveDice = DiceValue 
    if max(ValueDict.values()) == 5: 
        if not ThisScoreFlags.get('Yahtzee', False): 
            ThisScoreSheet['Yahtzee'] = 50 
            ThisScoreFlags['Yahtzee'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Yahtzee', 50]) 
            return 
        else: 
            if ThisScoreSheet['Yahtzee'] == 50: 
                ThisScoreSheet['YBonus'] = ThisScoreSheet.get('YBonus', 0) + 100 
                Log_Scoring.append([Game, Turn, Roll, FiveDice, 'YBonus', 100]) 
                ## Joker Rules... 
                YahtzeeValue = max(ValueDict, key=ValueDict.get) 
                YahtzeeName = ValueNames[YahtzeeValue] 
                if not ThisScoreFlags.get(YahtzeeName, False): 
                    ThisScoreSheet[YahtzeeName] = YahtzeeValue * 5 
                    ThisScoreFlags[YahtzeeName] = True 
                    Log_Scoring.append([Game, Turn, None, FiveDice, YahtzeeName, YahtzeeValue * 5]) 
                    return 
                if not ThisScoreFlags.get('TofK', False): 
                    ThisScoreSheet['TofK'] = YahtzeeValue * 5 
                    ThisScoreFlags['TofK'] = True 
                    Log_Scoring.append([Game, Turn, None, FiveDice, 'TofK', YahtzeeValue * 5]) 
                    return 
                if not ThisScoreFlags.get('FofK', False): 
                    ThisScoreSheet['FofK'] = YahtzeeValue * 5 
                    ThisScoreFlags['FofK'] = True 
                    Log_Scoring.append([Game, Turn, None, FiveDice, 'FofK', YahtzeeValue * 5]) 
                    return 
                if not ThisScoreFlags.get('FH', False): 
                    ThisScoreSheet['FH'] = 25 
                    ThisScoreFlags['FH'] = True 
                    Log_Scoring.append([Game, Turn, None, FiveDice, 'FH', 25]) 



Yahtzee Strategy Analysis – Wissner – Group 48  Page 15 

 

                    return 
                if not ThisScoreFlags.get('SS', False): 
                    ThisScoreSheet['SS'] = 30 
                    ThisScoreFlags['SS'] = True 
                    Log_Scoring.append([Game, Turn, None, FiveDice, 'SS', 30]) 
                    return 
                if not ThisScoreFlags.get('LS', False): 
                    ThisScoreSheet['LS'] = 40 
                    ThisScoreFlags['LS'] = True 
                    Log_Scoring.append([Game, Turn, None, FiveDice, 'LS', 40]) 
                    return 
                if not ThisScoreFlags.get('Chance', False): 
                    ThisScoreSheet['Chance'] = YahtzeeValue * 5 
                    ThisScoreFlags['Chance'] = True 
                    Log_Scoring.append([Game, Turn, None, FiveDice, 'Chance', YahtzeeValue * 5]) 
                    return 
                for bonfill in range(1, 7): 
                    bonname = ValueNames[bonfill] 
                    if not ThisScoreFlags.get(bonname, False): 
                        ThisScoreSheet[bonname] = 0 
                        ThisScoreFlags[bonname] = True 
                        Log_Scoring.append([Game, Turn, None, FiveDice, bonname, 0]) 
                        break 
                return 
    if Approach == 'Upper Focused': 
        if not ThisScoreFlags.get('Sixes', False): 
            if ValueDict.get(6, 0) >= 3: 
                ThisScoreSheet['Sixes'] = ValueDict[6] * 6 
                ThisScoreFlags['Sixes'] = True 
                Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Sixes', ValueDict[6] * 6]) 
                return 
        if not ThisScoreFlags.get('Fives', False): 
            if ValueDict.get(5, 0) >= 3: 
                ThisScoreSheet['Fives'] = ValueDict[5] * 5 
                ThisScoreFlags['Fives'] = True 
                Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Fives', ValueDict[5] * 5]) 
                return 
        if not ThisScoreFlags.get('Fours', False): 
            if ValueDict.get(4, 0) >= 3: 
                ThisScoreSheet['Fours'] = ValueDict[4] * 4 
                ThisScoreFlags['Fours'] = True 
                Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Fours', ValueDict[4] * 4]) 
                return 
        if not ThisScoreFlags.get('Threes', False): 
            if ValueDict.get(3, 0) >= 3: 
                ThisScoreSheet['Threes'] = ValueDict[3] * 3 
                ThisScoreFlags['Threes'] = True 
                Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Threes', ValueDict[3] * 3]) 
                return 
        if not ThisScoreFlags.get('Twos', False): 
            if ValueDict.get(2, 0) >= 3: 
                ThisScoreSheet['Twos'] = ValueDict[2] * 2 
                ThisScoreFlags['Twos'] = True 
                Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Twos', ValueDict[2] * 2]) 
                return 
        if not ThisScoreFlags.get('Ones', False): 
            if ValueDict.get(1, 0) >= 3: 
                ThisScoreSheet['Ones'] = ValueDict[1] * 1 
                ThisScoreFlags['Ones'] = True 
                Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Ones', ValueDict[1] * 1]) 
                return 
    if not ThisScoreFlags.get('LS', False): 
        if GetSequenceInfo(DiceValue)[0] == 5: 
            ThisScoreSheet['LS'] = 40 
            ThisScoreFlags['LS'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'LS', 40]) 
            return 
    if not ThisScoreFlags.get('SS', False): 
        if GetSequenceInfo(DiceValue)[0] >= 4: 
            ThisScoreSheet['SS'] = 30 
            ThisScoreFlags['SS'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'SS', 30]) 
            return 
    if not ThisScoreFlags.get('FH', False): 
        if max(ValueDict.values())==3 and min(ValueDict.values())==2: 
            ThisScoreSheet['FH'] = 25 
            ThisScoreFlags['FH'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'FH', 25]) 
            return 



Yahtzee Strategy Analysis – Wissner – Group 48  Page 16 

 

    if not ThisScoreFlags.get('Sixes', False): 
        if ValueDict.get(6, 0) >= 3: 
            ThisScoreSheet['Sixes'] = ValueDict[6] * 6 
            ThisScoreFlags['Sixes'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Sixes', ValueDict[6] * 6]) 
            return 
    if not ThisScoreFlags.get('Fives', False): 
        if ValueDict.get(5, 0) >= 3: 
            ThisScoreSheet['Fives'] = ValueDict[5] * 5 
            ThisScoreFlags['Fives'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Fives', ValueDict[5] * 5]) 
            return 
    if not ThisScoreFlags.get('Fours', False): 
        if ValueDict.get(4, 0) >= 3: 
            ThisScoreSheet['Fours'] = ValueDict[4] * 4 
            ThisScoreFlags['Fours'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Fours', ValueDict[4] * 4]) 
            return 
    if not ThisScoreFlags.get('Threes', False): 
        if ValueDict.get(3, 0) >= 3: 
            ThisScoreSheet['Threes'] = ValueDict[3] * 3 
            ThisScoreFlags['Threes'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Threes', ValueDict[3] * 3]) 
            return 
    if not ThisScoreFlags.get('Twos', False): 
        if ValueDict.get(2, 0) >= 3: 
            ThisScoreSheet['Twos'] = ValueDict[2] * 2 
            ThisScoreFlags['Twos'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Twos', ValueDict[2] * 2]) 
            return 
    if not ThisScoreFlags.get('Ones', False): 
        if ValueDict.get(1, 0) >= 3: 
            ThisScoreSheet['Ones'] = ValueDict[1] * 1 
            ThisScoreFlags['Ones'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Ones', ValueDict[1] * 1]) 
            return 
    if not ThisScoreFlags.get('FofK', False): 
        if max(ValueDict.values()) >= 4: 
            ThisScoreSheet['FofK'] = sum(DiceValue) 
            ThisScoreFlags['FofK'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'FofK', sum(DiceValue)]) 
            return 
    if not ThisScoreFlags.get('TofK', False): 
        if max(ValueDict.values()) >= 3: 
            ThisScoreSheet['TofK'] = sum(DiceValue) 
            ThisScoreFlags['TofK'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'TofK', sum(DiceValue)]) 
            return 
    if not ThisScoreFlags.get('Chance', False): 
        if sum(DiceValue) >= 15: 
            ThisScoreSheet['Chance'] = sum(DiceValue) 
            ThisScoreFlags['Chance'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Chance', sum(DiceValue)]) 
            return 
    if not ThisScoreFlags.get('Ones', False): 
        if ValueDict.get(1, 0) > 0: 
            ThisScoreSheet['Ones'] = ValueDict[1] * 1 
            ThisScoreFlags['Ones'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Ones', ValueDict[1] * 1]) 
            return 
    if not ThisScoreFlags.get('Twos', False): 
        if ValueDict.get(2, 0) > 0: 
            ThisScoreSheet['Twos'] = ValueDict[2] * 2 
            ThisScoreFlags['Twos'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Twos', ValueDict[2] * 2]) 
            return 
    if not ThisScoreFlags.get('Threes', False): 
        if ValueDict.get(3, 0) > 0: 
            ThisScoreSheet['Threes'] = ValueDict[3] * 3 
            ThisScoreFlags['Threes'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Threes', ValueDict[3] * 3]) 
            return 
    if not ThisScoreFlags.get('Fours', False): 
        if ValueDict.get(4, 0) > 0: 
            ThisScoreSheet['Fours'] = ValueDict[4] * 4 
            ThisScoreFlags['Fours'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Fours', ValueDict[4] * 4]) 
            return 
    if not ThisScoreFlags.get('Fives', False): 



Yahtzee Strategy Analysis – Wissner – Group 48  Page 17 

 

        if ValueDict.get(5, 0) > 0: 
            ThisScoreSheet['Fives'] = ValueDict[5] * 5 
            ThisScoreFlags['Fives'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Fives', ValueDict[5] * 5]) 
            return 
    if not ThisScoreFlags.get('Sixes', False): 
        if ValueDict.get(6, 0) > 0: 
            ThisScoreSheet['Sixes'] = ValueDict[6] * 6 
            ThisScoreFlags['Sixes'] = True 
            Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Sixes', ValueDict[6] * 6]) 
            return 
    if not ThisScoreFlags.get('Chance', False): 
        ThisScoreSheet['Chance'] = sum(DiceValue) 
        ThisScoreFlags['Chance'] = True 
        Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Chance', sum(DiceValue)]) 
        return 
    if not ThisScoreFlags.get('LS', False): 
        ThisScoreSheet['LS'] = 0 
        ThisScoreFlags['LS'] = True 
        Log_Scoring.append([Game, Turn, Roll, FiveDice, 'LS', 0]) 
        return 
    if not ThisScoreFlags.get('SS', False): 
        ThisScoreSheet['SS'] = 0 
        ThisScoreFlags['SS'] = True 
        Log_Scoring.append([Game, Turn, Roll, FiveDice, 'SS', 0]) 
        return 
    if not ThisScoreFlags.get('FH', False): 
        ThisScoreSheet['FH'] = 0 
        ThisScoreFlags['FH'] = True 
        Log_Scoring.append([Game, Turn, Roll, FiveDice, 'FH', 0]) 
        return 
    if not ThisScoreFlags.get('FofK', False): 
        ThisScoreSheet['FofK'] = 0 
        ThisScoreFlags['FofK'] = True 
        Log_Scoring.append([Game, Turn, Roll, FiveDice, 'FofK', 0]) 
        return 
    if not ThisScoreFlags.get('TofK', False): 
        ThisScoreSheet['TofK'] = 0 
        ThisScoreFlags['TofK'] = True 
        Log_Scoring.append([Game, Turn, Roll, FiveDice, 'TofK', 0]) 
        return 
    if not ThisScoreFlags.get('Ones', False): 
        ThisScoreSheet['Ones'] = 0 
        ThisScoreFlags['Ones'] = True 
        Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Ones', 0]) 
        return 
    if not ThisScoreFlags.get('Twos', False): 
        ThisScoreSheet['Twos'] = 0 
        ThisScoreFlags['Twos'] = True 
        Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Twos', 0]) 
        return 
    if not ThisScoreFlags.get('Threes', False): 
        ThisScoreSheet['Threes'] = 0 
        ThisScoreFlags['Threes'] = True 
        Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Threes', 0]) 
        return 
    if not ThisScoreFlags.get('Fours', False): 
        ThisScoreSheet['Fours'] = 0 
        ThisScoreFlags['Fours'] = True 
        Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Fours', 0]) 
        return 
    if not ThisScoreFlags.get('Fives', False): 
        ThisScoreSheet['Fives'] = 0 
        ThisScoreFlags['Fives'] = True 
        Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Fives', 0]) 
        return 
    if not ThisScoreFlags.get('Sixes', False): 
        ThisScoreSheet['Sixes'] = 0 
        ThisScoreFlags['Sixes'] = True 
        Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Sixes', 0]) 
        return 
    if not ThisScoreFlags.get('Yahtzee', False): 
        ThisScoreSheet['Yahtzee'] = 0 
        ThisScoreFlags['Yahtzee'] = True 
        Log_Scoring.append([Game, Turn, Roll, FiveDice, 'Yahtzee', 0]) 
        return 
    return 
 
 



Yahtzee Strategy Analysis – Wissner – Group 48  Page 18 

 

for Game in range(1, GamesToPlay + 1): 
    ThisScoreSheet = {} 
    ThisScoreFlags = {} 
    for Turn in range(1,14): 
        Roll = 0 
        StillRolling = True 
        DiceForTurn = GetNewSetofDice() 
        Log_SetsofDice.append([Game, Turn, DiceForTurn]) 
        DicePointer = 0 
        DiceValue = [0, 0, 0, 0, 0] 
        DiceHold = [False, False, False, False, False] 
        while StillRolling: 
            Roll = Roll + 1 
            holdreason = '' 
            DiceValue, DicePointer = RandomRoll(DiceValue, DiceHold, DiceForTurn, DicePointer) 
            PublicDiceValue = DiceValue[:] 
            DiceHold = [False, False, False, False, False] 
            ValueDict = {} 
            ValueDict = Counter(DiceValue) 
            if Tiebreaker == 'Low': 
                sortedValueDict = {val[0]: val[1] for val in sorted(ValueDict.items(), key=lambda x: (-x[1], 
x[0]))} 
            else: 
                sortedValueDict = {val[0]: val[1] for val in sorted(ValueDict.items(), key=lambda x: (-x[1], -
x[0]))} 
            DecisionMade = False 
            if Approach == 'One Roll': 
                StillRolling = False 
                DecisionMade = True 
            if Approach == 'Yahtzee Focused': 
                FocusVal = list(sortedValueDict.keys())[0] 
                FocusName = ValueNames[FocusVal] 
                for holdi in range(0, 5): 
                    if DiceValue[holdi] == FocusVal: 
                        DiceHold[holdi] = True 
                        holdreason = 'Going for Yahtzee' 
                if Roll == 3 or max(ValueDict.values()) == 5: 
                    StillRolling = False 
                DecisionMade = True 
            if Approach == 'Upper Focused': 
                for FocusVal in sortedValueDict.keys(): 
                    FocusName = ValueNames[FocusVal] 
                    if not ThisScoreFlags.get(FocusName, False): 
                        DecisionMade = True 
                        for holdi in range(0, 5): 
                            if DiceValue[holdi] == FocusVal: 
                                DiceHold[holdi] = True 
                                holdreason = 'Upper focused: ' + str(FocusVal) 
                        break 
                if Roll == 3 or max(ValueDict.values()) == 5: 
                    StillRolling = False 
            if Approach == 'Dice Driven' or not DecisionMade: 
                if max(ValueDict.values()) == 5: 
                    StillRolling = False 
                    DecisionMade = True 
                else: 
                    if max(ValueDict.values()) == 4: 
                        FocusVal = max(ValueDict, key=ValueDict.get) 
                        FocusName = ValueNames[FocusVal] 
                        for holdi in range(0, 5): 
                            if DiceValue[holdi] == FocusVal: 
                                DiceHold[holdi] = True 
                                holdreason = 'Have four of a kind' 
                        DecisionMade = True 
                    else: 
                        if not ThisScoreFlags.get('LS', False) or not ThisScoreFlags.get('SS', False): 
                            if len(ValueDict) >= 3: 
                                SeqLen = GetSequenceInfo(DiceValue)[0] 
                                if SeqLen == 5: 
                                    StillRolling = False 
                                    DecisionMade = True 
                                if SeqLen == 4: 
                                    DecisionMade = True 
                                    if ThisScoreFlags.get('LS', False): 
                                        StillRolling = False 
                                    else: 
                                        for seqnum in range(GetSequenceInfo(DiceValue)[1], 
GetSequenceInfo(DiceValue)[2]+1): 
                                            for holdi in range(0, 5): 



Yahtzee Strategy Analysis – Wissner – Group 48  Page 19 

 

                                                if DiceValue[holdi] == seqnum: 
                                                    DiceHold[holdi] = True 
                                                    holdreason = 'Going for LS; Seq=4' 
                                                    break 
                                if SeqLen == 3 and (max(ValueDict.values()) < 2 or 
ThisScoreFlags.get(ValueNames[max(ValueDict, key=ValueDict.get)], False)): 
                                    if not ThisScoreFlags.get('SS', False): 
                                        DecisionMade = True 
                                        for seqnum in range(GetSequenceInfo(DiceValue)[1], 
GetSequenceInfo(DiceValue)[2]+1): 
                                            for holdi in range(0, 5): 
                                                if DiceValue[holdi] == seqnum: 
                                                    DiceHold[holdi] = True 
                                                    holdreason = 'Going for at least SS; Seq=3' 
                                                    break 
                                    else: 
                                        sublists = [[1,2,3,5], [1,3,4,5], [2,3,4,6], [2,4,5,6]] 
                                        for sublist in sublists: 
                                            if ValueDict.get(sublist[0],0) > 0 and ValueDict.get(sublist[1],0) > 
0 and ValueDict.get(sublist[2],0) > 0 and ValueDict.get(sublist[3],0) > 0: 
                                                DecisionMade = True 
                                                for seqnum in sublist: 
                                                    for holdi in range(0, 5): 
                                                        if DiceValue[holdi] == seqnum: 
                                                            DiceHold[holdi] = True 
                                                            holdreason = 'Going for LS; Need inside number' 
                                                            break 
                            if not DecisionMade and Turn >= 12: 
                                DecisionMade = True 
                                for seqnum in range(GetSequenceInfo(DiceValue)[1], GetSequenceInfo(DiceValue)[2] 
+ 1): 
                                    for holdi in range(0, 5): 
                                        if DiceValue[holdi] == seqnum: 
                                            DiceHold[holdi] = True 
                                            holdreason = 'Going for straight; last two turns' 
                                            break 
                        if not DecisionMade and not ThisScoreFlags.get('FH', False): 
                            if len(ValueDict) == 2: 
                                DecisionMade = True 
                                StillRolling = False 
                            ValDictCounter = Counter(ValueDict.values()) 
                            if ValDictCounter.get(2, 0) == 2: 
                                fhsorted = {val[0]: val[1] for val in sorted(ValueDict.items(), key=lambda x: (-
x[1], -x[0]))} 
                                highername = ValueNames[list(fhsorted.keys())[0]] 
                                if not ThisScoreFlags.get(highername, False): 
                                    DecisionMade = True 
                                    for holdi in range(0, 5): 
                                        if DiceValue[holdi] == list(fhsorted.keys())[0]: 
                                            DiceHold[holdi] = True 
                                            holdreason = 'Going for Upper instead of FH: ' + 
str(list(fhsorted.keys())[0]) 
                                else: 
                                    lowername = ValueNames[list(fhsorted.keys())[1]] 
                                    if not ThisScoreFlags.get(lowername, False): 
                                        DecisionMade = True 
                                        for holdi in range(0, 5): 
                                            if DiceValue[holdi] == list(fhsorted.keys())[1]: 
                                                DiceHold[holdi] = True 
                                                holdreason = 'Going for Upper instead of FH: ' + 
str(list(fhsorted.keys())[1]) 
                                    else: 
                                        DecisionMade = True 
                                        for holdi in range(0, 5): 
                                            if DiceValue[holdi] == list(fhsorted.keys())[0] or DiceValue[holdi] 
== list(fhsorted.keys())[1]: 
                                                DiceHold[holdi] = True 
                                                holdreason = 'Going for FH' 
                        if not DecisionMade: 
                            NeedScoreDict = {} 
                            for EachVal in ValueDict.keys(): 
                                EachName = ValueNames[EachVal] 
                                if not ThisScoreFlags.get(EachName, False): 
                                    NeedScoreDict[EachVal] = NeedScoreDict.get(EachVal, 0) + (3 * 
ValueDict[EachVal]) 
                                if not ThisScoreFlags.get('FofK', False): 
                                    if EachVal >= 3: 
                                        NeedScoreDict[EachVal] = NeedScoreDict.get(EachVal, 0) + (2 * 
ValueDict[EachVal]) 



Yahtzee Strategy Analysis – Wissner – Group 48  Page 20 

 

                                    else: 
                                        NeedScoreDict[EachVal] = NeedScoreDict.get(EachVal, 0) + (1 * 
ValueDict[EachVal]) 
                                if not ThisScoreFlags.get('TofK', False): 
                                    if EachVal >= 4: 
                                        NeedScoreDict[EachVal] = NeedScoreDict.get(EachVal, 0) + (2 * 
ValueDict[EachVal]) 
                                    else: 
                                        NeedScoreDict[EachVal] = NeedScoreDict.get(EachVal, 0) + (1 * 
ValueDict[EachVal]) 
                                if not ThisScoreFlags.get('FH', False): 
                                    NeedScoreDict[EachVal] = NeedScoreDict.get(EachVal, 0) + (1 * 
ValueDict[EachVal]) 
                                if not ThisScoreFlags.get('Yahtzee', False): 
                                    NeedScoreDict[EachVal] = NeedScoreDict.get(EachVal, 0) + (1 * 
ValueDict[EachVal]) 
                            if len(NeedScoreDict) > 0: 
                                DecisionMade = True 
                                sortedNeedScoreDict = {val[0]: val[1] for val in sorted(NeedScoreDict.items(), 
key=lambda x: (-x[1], -x[0]))} 
                                MaxNeedVal = list(sortedNeedScoreDict.keys())[0] 
                                for holdi in range(0, 5): 
                                    if DiceValue[holdi] == MaxNeedVal: 
                                        DiceHold[holdi] = True 
                                        holdreason = 'Holding based on Total Need Score for: ' + str(MaxNeedVal) 
                if Roll == 3: 
                    StillRolling = False 
            if StillRolling == True: 
                helddicevar = DiceHold 
            else: 
                helddicevar = [] 
                holdreason = '' 
            Log_Rolls.append([Game, Turn, Roll, PublicDiceValue, helddicevar, holdreason]) 
        DefaultPriorityScoring(Game, Turn, Roll, DiceValue, ValueDict) 
 
    if ThisScoreSheet['Ones'] + ThisScoreSheet['Twos'] + ThisScoreSheet['Threes'] + ThisScoreSheet['Fours'] + 
ThisScoreSheet['Fives'] + ThisScoreSheet['Sixes'] >= 63: 
        ThisScoreSheet['UpperBonus'] = 35 
        Log_Scoring.append([Game, None, None, None, 'UpperBonus', 35]) 
    else: 
        ThisScoreSheet['UpperBonus'] = 0 
        Log_Scoring.append([Game, None, None, None, 'UpperBonus', 0]) 
    ThisScoreSheet['YBonus'] = ThisScoreSheet.get('YBonus', 0) 
    thistotal = sum(ThisScoreSheet.values()) 
    ThisScoreSheet['Total'] = thistotal 
    ThisScoreSheet['Approach'] = ApproachName 
    ThisScoreSheet['Game'] = Game 
    ThisScoreSheetDF = pd.DataFrame([ThisScoreSheet]) 
    MasterScoreSheet = MasterScoreSheet.append(ThisScoreSheetDF) 
 
pd.set_option('max_columns', None) 
 
SetsofDiceDF = pd.DataFrame(Log_SetsofDice) 
SetsofDiceDF.columns = ['Game', 'Turn', 'SetofDice'] 
SetsofDiceDF.to_csv('Log - ' + ApproachName + ' - SetsofDice.csv') 
 
DiceValueDF = pd.DataFrame(Log_DiceValues) 
DiceValueDF.columns = ['Game', 'Turn', 'Roll', 'DiceValue'] 
DiceValueDF.to_csv('Log - ' + ApproachName + ' - DiceValues.csv') 
 
ScoringLogDF = pd.DataFrame(Log_Scoring) 
ScoringLogDF.columns=['Game', 'Turn', 'LastRoll', 'Dice', 'Slot', 'Points'] 
ScoringLogDF.to_csv('Log - ' + ApproachName + ' - Scoring.csv') 
 
RollLogDF = pd.DataFrame(Log_Rolls) 
RollLogDF.columns=['Game', 'Turn', 'Roll', 'Dice', 'HeldDice', 'HoldReason'] 
RollLogDF.to_csv('Log - ' + ApproachName + ' - Rolls.csv') 
 
print('Average scores over', GamesToPlay, 'games of Yahtzee using the', ApproachName, 'strategy:') 
print('Seed:', str(SeedtoUse)) 
print(MasterScoreSheet[MasterScoreSheet.columns[~MasterScoreSheet.columns.isin(['Approach', 'Game'])]].mean()) 
print(ApproachName) 
MasterScoreSheet.to_csv('Log - ' + ApproachName + ' - MasterScoreSheet.csv') 


