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IntroducƟon 

For the final exam, students were asked to develop two analyƟc models based on a training data set of 10,000 
observaƟons.  These 10,000 observaƟons contained two predictor variables (X1 and X2) and 200 values 
generated from an unknown funcƟon of those variables.  The Mean and Variance of those generated values for 
each X1/X2 combinaƟon ulƟmately represented the response variables that were used to train the models.   

Students were then to use these models to predict the Mean and Variance for 2,500 X1 and X2 values from an 
unknown tesƟng data set.  Ranges of target mean squared error values for each set of predicƟons were 
provided. 

 

Exploratory Data Analysis 

The direcƟons for the exam sƟpulated that the training data set included 
each combinaƟon of X1 and X2, each uniformly distributed between 0 and 1 
inclusively with intervals of 0.01.  To that end, there was no need to test for 
mulƟcollinearity or other relaƟonships between the predictor variables.  The 
image to the right illustrates the even coverage across these data points.  

RelaƟonships between the predictor variables and each of the response 
variables can, however, be explored.  The following image shows those 
relaƟonships isolated by each response and predictor variable.  The curves 
appear to suggest some degree of nonlinearity in the relaƟonships, and perhaps are polynomial in nature. 

 



When considering both the X1 and X2 variables together, three-dimensional renderings available from the 
‘plot3d’ funcƟon in the ‘rgl’ library can be helpful in geƫng a beƩer sense of the shape of the data.  These 
tools are interacƟve, allowing the analyst to rotate the view to fully see the 3D space.  StaƟc versions of these 
renderings are included below to illustrate the benefit (Mean chart is on the leŌ; Variance is on the right). 

 

AddiƟonal insights about the distribuƟon of the 200 data points associated with each X1/X2 pair were possible 
using trellised histograms.  Viewing the enƟre 100x100 matrix was not meaningful, so the chart was broken up 
into twenty-five 20x20 X1/X2 secƟons.  An example is provided below.  Note that, although details from any 
one specific cell are not clear, the overall visualizaƟon represents the changing shape of the distribuƟons 
(which, in turn, affects both the resulƟng Mean and Variance response variables). 

 



Methodology 

Before building any models, a few preparatory steps were taken with the data.  With the potenƟal for an 
interacƟon to exist between the predictor variables, a new variable (X1X2) was created by mulƟplying X1 and 
X2.  AddiƟonally, the training data set was randomly divided into ten subsets for subsequent use in Monte 
Carlo cross validaƟon (MCCV). 

Using these MCCV loops, the following models were trained, tuned, and assessed: 

Linear Regression.  This was unlikely to be the final model based on the shape of the data as 
noted above.  It did, however, provide a “worst case scenario” and an MSE for the other models 
to beat.  Two versions were created:  one with the original two predictor variables and one that 
included the X1X2 interacƟon variable.  

K Nearest Neighbors (KNN).  In this method, predicƟons are made based on the data points 
(quanƟty of “k”) nearest to the data points for the record in quesƟon. Those neighbors 
effecƟvely vote, and the average of those data points becomes the predicƟon for that record.  
The parameter of k was tuned by iteraƟng over opƟons between 3 and 151, inclusive, within 
each MCCV loop.   

Generalized AddiƟve Models with Local Smoothing.  These models are advantageous because 
they do not assume a linear relaƟonship between the predictor and response variables.  
MulƟple versions of this model were evaluated:  with smoothing on just the original variables, 
with smoothing also on the new X1X2 interacƟon variable, and with tensor product smoothing 
on the original X1 and X2 variables.  AddiƟonally, different values of “k” were assessed to best 
capture a suitable number of degrees of freedom while balancing compuƟng performance.   

Neural Network.  A limited number of neural network models were trained and evaluated.  
Having already idenƟfied a model that returned an MSE within the target range, however, 
addiƟonal tuning and exploraƟon was not conducted to increase their performance.  The 
computaƟon Ɵme for each variant, considering the MCCV loops, was deemed unnecessary.   

  



Results 

Models were created first for the esƟmated Mean.  Each of the models were built and tuned as noted in the 
table below.  The average mean square error for each model over the ten Monte Carlo cross-validaƟon loops is 
also listed. 

 

The General AddiƟve Model using local smoothers and tensor product smoothing (with k=20) was the best 
model (MSE = 1.186734) and was used to predict the esƟmated Mean values for the test data provided. 

The final model: 

m3c_ss <- mgcv::gam(muhat ~ s(X1, k=20) + s(X2, k=20) + s(X1X2, k=20) + te(X1,X2, k=20), data=data0) 

The three-dimensional shape of the predicted values appears to resemble that of the training data provided.  

 

Model Notes MCCV MSE

Linear Regression Original variables 9.203908

Linear Regression Including X1X2 interaction variable 8.401605

K Nearest Neighbors Best "k" from 3 to 151 selected and used within each MCCV loop 1.242015

General Additive Model Local smoothers for original 2 variables (k=5) 3.202775

General Additive Model
Local smoothers for original variables (k=10); tensor product smoother for 
original variables (k=15)

1.199151

General Additive Model
Local smoothers for original variables (k=10) and X1X2 interaction variable 
(k=20); tensor product smoother for original variables (k=25)

1.194896

General Additive Model
Local smoothers for original variables and X1X2 interaction variable; tensor 
product smoother for original variables (k=15)

1.191786

General Additive Model
Local smoothers for original variables and X1X2 interaction variable; tensor 
product smoother for original variables (k=20)

1.186734

General Additive Model
Local smoothers for original variables and X1X2 interaction variable; tensor 
product smoother for original variables (k=25)

1.186816

Neural Network SoftPlus activiation function (like ReLu); threshold=0.04; hidden=5 1.471997

Neural Network SoftPlus activiation function (like ReLu); threshold=0.04; hidden=(4,2) 1.391394

Neural Network SoftPlus activiation function (like ReLu); threshold=0.04; hidden=(4,4) 1.326498

Neural Network SoftPlus activiation function (like ReLu); threshold=0.04; hidden=(3,3,3) 1.313974



Models were then trained for the Variance response variable.  Similar tacƟcs were employed to tune 
parameters, including tweaking the k-values in the General AddiƟve Model.  The table below shows the 
models, associated notes, and the MCCV MSE. 

 

 

Once again, the General AddiƟve Model that uƟlized both the interacƟon variable and tensor product 
smoothing (with k=10, 20, and 25, respecƟvely) was the opƟmal model with an MSE of 530.4121.   

The final model: 

v_ss <- mgcv::gam(Vhat ~ s(X1, k=10) + s(X2, k=10) + s(X1X2, k=20) + te(X1,X2, k=25), data=data0) 

As with the esƟmated Mean values, the esƟmated Variance values can be ploƩed in a 3D space for comparison 
against the Variance values from the original training data set. 

 

Conclusion 

With Cross-ValidaƟon MSE scores within the top end of the targeted range of scores, my expectaƟon is that 
these models will have performed well on the 2,500 records of unseen test data.  Per the Final Exam 
direcƟons, those predicƟons have been saved to a file named “1.Wissner.Eric.csv”. 

Model Notes MCCV MSE

Linear Regression Original variables 2172.0956

Linear Regression Including X1X2 interaction variable 2172.5596

K Nearest Neighbors Best "k" from 3 to 151 selected and used within each MCCV loop 561.2063

General Additive Model Local smoothers for original 2 variables (k=5) 756.2603

General Additive Model
Local smoothers for original variables; tensor product smoother for original 
variables (k=10)

533.6394

General Additive Model
Local smoothers for original variables and X1X2 interaction variable; tensor 
product smoother for original variables (k=10)

531.0233

General Additive Model
Local smoothers for original variables (k=10) and X1X2 interaction variable 
(k=20); tensor product smoother for original variables (k=25)

530.4121


